Awardee OrganizationUNIVERSITY OF MICHIGAN AT ANN ARBOR
Description
Abstract Text
DESCRIPTION (provided by applicant): As determined by the cancer research community and NCI, inefficiencies and inaccuracies of existing methods for drug testing are critical obstacles preventing development and clinical translation of new drugs to dramatically improve cancer therapy (Provocative Question 17). To overcome these obstacles, we will develop a new 3D cell culture model of disseminated breast cancer cells in the bone marrow microenvironment. Our focus on the bone marrow microenvironment is driven by the high frequency of disseminated cancer cells even in patients with seemingly localized primary tumors, limited activity of drugs against metastases relative to primary tumors, and > 90% of cancer mortality caused by metastatic disease. Our model will incorporate multiple types of human bone marrow stromal cells, including mesenchymal stem cells, endothelium, and osteoblasts. One or more of these cell types form protective niches that may confer drug resistance to metastatic breast cancer cells through intercellular signaling pathways. We will optimize culture conditions to reproduce hypoxia normally present in human bone marrow, using an innovative imaging technique to quantify oxygenation within 3D spheroids. We will test activity of standard chemotherapeutic drugs in breast cancer and promising molecularly-targeted compounds against human cell lines representative of intrinsic molecular subtypes of breast cancer integrated into 3D bone marrow spheroids. We also will test compounds against primary human breast cancer cells passaged only as mouse xenografts and correlate responses in 3D culture with patient outcomes. For both cell lines and primary tumor specimens, we will use advanced optical imaging methods to measure drug targeting, potential mechanisms of drug resistance, and heterogeneous responses of breast cancer cells to treatment. We will answer Provocative Question 17 by accomplishing the following specific aims: 1) develop an advanced 3D culture system to analyze treatment of disseminated human breast cancer cells in bone marrow; 2) quantify effects of compounds on breast cancer cell lines representative of molecular subclasses of human breast cancer and tumor-initiating cells; 3) determine activities of compounds against primary patient tumor samples. Collectively, this research will establish a facile, inexpensive, reproducible model to test potential cancer drugs and accurately match compounds with patient subpopulations highly likely to respond to treatment. The strategy will accelerate clinical translation of new, more effective cancer drugs while reducing costs of drug development.
PUBLIC HEALTH RELEVANCE: This research will develop an improved approach for testing potential new drugs against breast cancer cells in bone marrow, a common site of metastatic disease. Our approach can be used for many other types of cancer, so this research will lead to better therapies for multiple patients.
Public Health Relevance Statement
This research will develop an improved approach for testing potential new drugs against breast cancer cells in bone marrow, a common site of metastatic disease. Our approach can be used for many other types of cancer, so this research will lead to better therapies for multiple patients.
No Sub Projects information available for 1R01CA170198-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R01CA170198-01
Patents
No Patents information available for 1R01CA170198-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R01CA170198-01
Clinical Studies
No Clinical Studies information available for 1R01CA170198-01
News and More
Related News Releases
No news release information available for 1R01CA170198-01
History
No Historical information available for 1R01CA170198-01
Similar Projects
No Similar Projects information available for 1R01CA170198-01