Immune aspects of mTOR inhibition for cancer prevention (PQ5)
Project Number1R21CA170491-01
Contact PI/Project LeaderCURIEL, TYLER J.
Awardee OrganizationUNIVERSITY OF TEXAS HLTH SCIENCE CENTER
Description
Abstract Text
DESCRIPTION (provided by applicant): This application will define mechanisms of rapamycin-mediated tumor onset delay or prevention and will dissect mTOR effects directly on the tumor versus immune cell effects. It addresses Provocative Question 5: defining mechanisms of action of drugs used for other purposes. We challenge the paradigm that mTOR inhibition reduces or prevents cancer by direct effects on tumors through mTOR growth and metabolic effects, and explore the potential for mTOR inhibitors to prevent cancer through mTOR-mediated immune effects. We hypothesize that mTOR inhibition with oral rapamycin delays or prevents cancer onset in part through immune mechanisms, and will test concepts in a well-defined carcinogen-induced skin cancer model in which T cells and IFN-¿ are important protective agents and in which mTOR inhibition prevents cancer. Mice will have tumor induced with dimethylbenz(a)-anthracene (DMBA) plus the promoter 12-O- tetradecanoylphorbol-13-acetate (TPA) and will be treated with oral rapamycin or control. Time to tumor onset, malignant change and tumor size and effects on tumor immune surveillance will be studied as will mTOR signaling in tumor versus other cells. Aim 1 Test the hypothesis that T cells contribute to oral rapamycin- mediated cancer prevention. Aim 2 Test the hypothesis that IFN-¿ contributes to oral rapamycin- mediated cancer prevention. Aim 3 Test the hypothesis that rapamycin prevents cancer by direct effects on tumor cells. mTOR inhibition directly in tumors cell is not mutually exclusive with immune mechanisms.
Relevance: Cancer is the number one killer in the US. Cure rates for advanced cancers have changed little in the past 50 years. Prevention is more cost effective and broadly applicable than treatments. We thus propose a novel, safe, broad spectrum approach to cancer prevention using rapamycin as a potential first-in-class agent.
PUBLIC HEALTH RELEVANCE: This application will use a well-characterized carcinogen-induced mouse model for skin cancer to test whether immune effects of rapamycin contribute to its cancer prevention properties. This model mirrors important tumor signaling and host immune defense pathways involved in major human cancers.
Public Health Relevance Statement
This application will use a well-characterized carcinogen-induced mouse model for skin cancer to test whether immune effects of rapamycin contribute to its cancer prevention properties. This model mirrors important tumor signaling and host immune defense pathways involved in major human cancers.
No Sub Projects information available for 1R21CA170491-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R21CA170491-01
Patents
No Patents information available for 1R21CA170491-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R21CA170491-01
Clinical Studies
No Clinical Studies information available for 1R21CA170491-01
News and More
Related News Releases
No news release information available for 1R21CA170491-01
History
No Historical information available for 1R21CA170491-01
Similar Projects
No Similar Projects information available for 1R21CA170491-01