Novel approach to study intravasation in primary human breast cancer cells(PQ24)
Project Number1R01CA170507-01
Contact PI/Project LeaderOKTAY, MAJA HRZENJAK Other PIs
Awardee OrganizationALBERT EINSTEIN COLLEGE OF MEDICINE
Description
Abstract Text
DESCRIPTION (provided by applicant): A new approach for studying intravasation of primary human breast cancer cells (PQ#24). Approximately 30-40% of women diagnosed with a curable breast cancer eventually die of metastatic disease. Since currently available technologies to study metastatic process are limited there is an urgent need to develop new approaches. We have been developing an approach for studying the intravasation step of metastasis composed of 3 integrated aspects: 1) devising an intravasation assay (INA), 2) optimizing methods for primary human breast cancer cells isolation from patient samples, and 3) adapting multiphoton imaging (MI) to explore cellular interactions leading to intravasation. Using these technologies we will explore a hypothesis that human breast cancers contain varying proportions of intravasation-competent cancer cells with distinct gene expression profile and they determine the clinical behavior of a particular breast cancer. Our preliminary studies indicate that: 1) we can use INA to study intravasation activity of breast cancer cells obtained by fine needle aspiration biopsy (FNA) from patients' tumors; 2) human breast cancers have varying proportions of intravasation-competent cells, and intravasate better in the presence of macrophages; 3) intravasation- competent primary human breast cancer cells express unique isoforms of an actin regulatory protein Mena that are related to an intravasation signature; 4) cancer cells with high MenaINV and low Mena11a isoform expression pattern participate with macrophages in transendothelial migration as assessed by INA and intravasation in mammary tumors in vivo, 5) intravasation sites called TMEM containing Mena overexpressing tumor cells and macrophages exist in human breast carcinomas and the number of TMEM sites correlates with distant metastasis. We also have evidence that some intravasation-competent cells adhere to apical endothelial surface upon intravasation while others do not. We propose to use INA and MI to study spatial and temporal interactions of human breast cancer cells with endothelial cells and macrophages as they intravasate in INA and assess estrogen, Her2Neu receptor and Mena isoform expression pattern in the intravasation- competent cells. In addition, we will correlate th clinicopathological parameters with the percentage of intravasation-competent cells that adhere to endothelial apical surface upon intravasation and those that do not, assess the effect of Mena isoform overexpression on intravasation and define a set of genes uniquely expressed in intravasation-competent human breast cancer cells. To assess if the ability of cancer cells to cross engineered endothelium in vitro reflects their in vivo intravasation potential we will collec fluorescent- labeled intravasation-competent and incompetent cells to determine differential interactions with endothelia, identify genes involved in endothelial interactions, and experimentally manipulate their intravasation activities in vitro and in vivo.
PUBLIC HEALTH RELEVANCE: A new approach for studying intravasation of primary human breast cancer cells (PQ#24). The new approach will allow us to study the biology of intravasation most relevant to human disease because we will use human breast cancer cells obtained from patients' breast cancer excisions. In addition, it will allow us to define human intravasation signature which will represent a foundation for development of anti-metastatic therapeutic targets which are urgently needed to decrease breast cancer associated morbidity and mortality.
Public Health Relevance Statement
A new approach for studying intravasation of primary human breast cancer cells (PQ#24). The new approach will allow us to study the biology of intravasation most relevant to human disease because we will use human breast cancer cells obtained from patients' breast cancer excisions. In addition, it will allow us to define human intravasation signature which will represent a foundation for development of anti-metastatic therapeutic targets which are urgently needed to decrease breast cancer associated morbidity and mortality.
No Sub Projects information available for 1R01CA170507-01
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 1R01CA170507-01
Patents
No Patents information available for 1R01CA170507-01
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 1R01CA170507-01
Clinical Studies
No Clinical Studies information available for 1R01CA170507-01
News and More
Related News Releases
No news release information available for 1R01CA170507-01
History
No Historical information available for 1R01CA170507-01
Similar Projects
No Similar Projects information available for 1R01CA170507-01