ABSTRACT
The introduction of clinical exome sequencing and whole genome sequencing has transformed our ability to
diagnose patients with suspected genetic disease. Clinical exome sequencing identifies a potential molecular
DNA lesion in at least 25-30% of patients with a suspected genetic diagnosis. New technologies such as genome
sequencing, mRNA sequencing, and metabolomics profiling are continuing to increase this diagnostic rate. In
addition, the introduction of these technologies has led to the discovery of hundreds of new disease genes and
to phenotypic expansion within known genetic diagnoses. This continued discovery of new disease genes leads
to structure, function and mechanistic discoveries that point to personalized approaches for management and
therapy. Moreover, a precise genetic diagnosis ends the costly diagnostic odyssey, facilitates personalized
preventive medicine for long-term complications of the diagnosis, enables appropriate anticipatory guidance,
and facilitates genetic counseling for families. However, up to 70% of patients with suspected genetic disease
remain undiagnosed likely because their disease-causing variant(s) has yet to be discovered or because the
clinical significance of variants identified in genomic studies remains unclear. Collaborations between clinician
scientists and model organism researchers have played a fundamental role in facilitating this revolution in
genomic medicine. Model organisms, such as the fruity fly and laboratory mouse, are important tools for aiding
in the interpretation of variants identified in sequencing data. In some cases, model organisms have provided
key data supporting the association of a phenotype with a new disease gene. Beyond modeling the genotype
and phenotype, studies in model organisms, such as fly, mouse, and non-human primates, may inform
therapeutic management of patients with genetic disorders. In addition, these model organisms provide key
resources for biomarker discovery, drug screens, and evaluation of genotype-specific therapeutic strategies.
Our previous success in precision modeling of human disease at BCM is due to strong collaborative efforts
between local clinicians, genome scientists, and model organism scientists that is afforded by the integration of
basic, translational, clinical, and diagnostic activities housed within the DMHG at BCM. This integration has
established a flow of clinical and genomic information from prenatal, pediatric and adult genetics patients and
study participants to laboratory geneticists at Baylor Genetics and various gene discovery programs. In so doing,
we have established and modeled the clinical, preclinical, and model organism workflow that we are now
extending to mammalian species. Our Preclinical/Co-Clinical section will leverage this existing infrastructure
and expertise and extend its use to the wider community through the following aims: 1) Coordinate and review
variant nominations, 2) Formulate clinical questions requiring precision modeling, and 3) Translate clinical
significance of precision models.
No Sub Projects information available for 5U54OD030165-05 5369
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5U54OD030165-05 5369
Patents
No Patents information available for 5U54OD030165-05 5369
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5U54OD030165-05 5369
Clinical Studies
No Clinical Studies information available for 5U54OD030165-05 5369
News and More
Related News Releases
No news release information available for 5U54OD030165-05 5369
History
No Historical information available for 5U54OD030165-05 5369
Similar Projects
No Similar Projects information available for 5U54OD030165-05 5369