Hippocampal-subcortical interactions underlying social memory
Project Number5R00MH122582-05
Former Number5K99MH122582-02
Contact PI/Project LeaderOLIVA GONZALEZ, AZAHARA
Awardee OrganizationCORNELL UNIVERSITY
Description
Abstract Text
The goal of this project is to understand the subcortical-hippocampal circuit mechanisms underlying
social memory consolidation and brain state changes. The hippocampal mechanisms underlying spatial memory
involve the reactivation of cells (active in the learning phase) during sharp-wave ripples (SWRs). However, it is
not yet well known how these mechanisms extend to other types of declarative memory, such as social memory.
Previously, I showed that the CA2 region can generate SWRs. In addition, CA2 has been reported to play a role
in social behaviors. In the K99 of this award, I will study the underlying mechanisms of social memory. I will use
large-scale electrophysiology and online optogenetic manipulations in different transgenic mouse lines.
In addition to the hippocampus, the median raphe nuclei (MnR), which sends anatomical projections to
CA2, has been also related to social behaviors. The MnR is one of the sources of serotonin production in the
brain, which has been related to social and mood disorders both in rodents and humans. Furthermore, it was
recently shown that MnR activity modulate hippocampal SWRs. During the R00 part of this award, I will
investigate the role of the MnR-CA2 circuit in social memory. In order to address this, I will combine modern
anatomical techniques, simultaneous electrophysiological recordings of MnR-hippocampus and simultaneous
electrophysiological recordings and fiber photometry measurements to monitor the serotonergic tone from MnR.
Finally, my previous work and others showed that CA2 activity correlates with hippocampal network
transitions, such as SWRs states and running-immobility states. This suggests that CA2 might play a role in
general brain state transitions. Interestingly, the MnR has also been reported to have a role in state transitions
during waking and sleep. During the R00 phase, I will investigate the role of MnR-CA2 in gating global brain
state transitions. I will use simultaneous electrophysiology from both regions combined with wide stimulation of
MnR terminals in CA2. Furthermore, by using micro-LED embedded silicon based electrodes in specific
transgenic animals, I will precisely dissect the contribution of the different MnR cells to each state transition.
In summary, this proposal aims to understand the subcortical-hippocampal interactions underlying social
memory and in general, brain state network dynamics. I will apply state of the art electrophysiological recordings,
selective manipulation techniques and calcium signal recordings. The conclusions that I will be to extract from
this project will shed light into our current basic understanding of neuropsychiatric diseases and mood disorders.
The new technical skills that I will be able to acquire during the training period of this grant will be crucial
in order to settle the basis of the research program of my independent laboratory studying subcortical-
hippocampal interactions. In addition, the complementary skills that I will gain by training in writing, project
managing and leadership, together with the guidance from my mentoring team and the diverse environments of
Columbia University and NYU, will entitle me with the proper scientific skills to launch my independent career.
No Sub Projects information available for 5R00MH122582-05
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5R00MH122582-05
Patents
No Patents information available for 5R00MH122582-05
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5R00MH122582-05
Clinical Studies
No Clinical Studies information available for 5R00MH122582-05
News and More
Related News Releases
No news release information available for 5R00MH122582-05
History
No Historical information available for 5R00MH122582-05
Similar Projects
No Similar Projects information available for 5R00MH122582-05