Intracellular signaling mechanisms underlying opioid modulation of pain
Project Number5F30DA057838-03
Contact PI/Project LeaderBAYLESS-EDWARDS, LANDON
Awardee OrganizationOREGON HEALTH & SCIENCE UNIVERSITY
Description
Abstract Text
PROJECT SUMMARY
Opioid use disorder is a public health crisis that stems from the highly addictive nature and potent
analgesic properties of opioids. Opioids modulate circuitry involved in analgesia, pain-induced negative
affect, motivation, reward, and addiction. They act on G-protein coupled opioid receptors, inducing multiple
intracellular signaling pathways. Of these, the cyclic adenosine monophosphate (cAMP) and protein
kinase A (PKA) pathway is known to be a key mechanism in analgesia, pain-related aversion, and opioid-
induced hyperalgesia. Most studies examining PKA signaling in response to opioids or pain are limited by
in vitro or ex vivo approaches that cannot simultaneously consider cell-type specific PKA signaling,
complex circuit-level regulation, and effects of behavior on PKA dynamics. As a result, it remains unclear
exactly where and when PKA is modulated in response to opioids; nor is it clear what the functional effects
of these spatiotemporal PKA dynamics are on analgesia. Understanding the functional significance of
opioid-induced intracellular signaling and how this signaling differs in unique cell types and brain regions
will allow us to better comprehend how opioids differentially effect pain and addiction circuitry. The goals
of this proposal are as follows: First, I will define the temporal dynamics of mu opioid-induced PKA
signaling within the mediodorsal thalamus (MD) to anterior cingulate cortex (ACC) circuitry. This circuitry
highly expresses mu opioid receptors and integrates sensory and affective pain. Then, I will determine
whether there is a causal relationship between these PKA dynamics and pain relief. Finally, I will examine
the cell-type specificity of these PKA dynamics. My central hypothesis is that PKA dynamics will depend
on the duration of opioid exposure and will determine the extent of pain response, with specific cell types
acting as key sites of PKA modulation. This hypothesis will be tested using a novel genetically encoded
sensor designed for in vivo imaging of PKA activity in behaving mice. To examine regional differences in
temporal PKA dynamics in response to acute and chronic opioid exposure, PKA will be imaged before,
during, and after opioid administration in the MD and ACC. Imaging will be paired with pain assays to
assess analgesia and hyperalgesia. To test the necessity and sufficiency of PKA dynamics in pain relief,
PKA activity will be modulated by either a genetically encoded PKA inhibitor or photoactivatable adenylyl
cyclase while conducting behavioral assays of pain. Finally, to examine the cell-specificity of PKA
dynamics, sensor expression will be isolated to each cell type of interest in a Cre-dependent manner, and
peptide agonists and antagonists of mu opioid receptors will be locally infused during PKA imaging. This
study will define how PKA signaling in specific components of the MD to ACC circuitry both responds to
opioids and mediates pain relief. Achieving these goals will provide insight into how intracellular signaling
is spatiotemporally regulated by opioids and facilitates analgesia.
Public Health Relevance Statement
PROJECT NARRATIVE
Opioids are commonly prescribed analgesics with high addictive potential, but we do not fully understand
the signaling pathways that cause analgesia versus addiction. Here, I propose to (1) investigate the
spatiotemporal dynamics of one opioid-induced intracellular signaling pathway and (2) define this
pathway’s role in analgesia. By identifying key brain regions and cell types in which this signaling occurs
and the direct functional consequence of this signaling, this work will extend our understanding of opioid
modulation of pain circuitry.
NIH Spending Category
No NIH Spending Category available.
Project Terms
Absence of pain sensationAcuteAdenylate CyclaseAffectAffectiveAgonistAnalgesicsAnteriorBehaviorBehavioral AssayBrain regionCellsChronicComplexCoupledCyclic AMPCyclic AMP-Dependent Protein KinasesDendritesFluorescence Resonance Energy TransferFluorescent in Situ HybridizationGTP-Binding ProteinsGoalsHourHyperalgesiaImageIn VitroInterneuronsLabelMeasuresMediatingMembraneMethodologyModelingMorphineMotivationMusNatureNeuronsOpioidOpioid ReceptorOpioid agonistPainPain MeasurementPathway interactionsPeptidesPlayPositioning AttributeProductionPropertyProtein DynamicsProtein Kinase A InhibitorPublic HealthReceptor ActivationRegulationResearchResolutionRewardsRoleSensorySignal PathwaySignal TransductionSiteSpecificitySynapsesTestingThalamic structureWorkaddictionantagonistbehavioral studybrain cellcell typecingulate cortexdermorphindesignexperimental studyfluorescence lifetime imaginghippocampal pyramidal neuronin vivoin vivo imaginginsightinterestmorphine administrationmu opioid receptorsnegative affectneuronal cell bodynovelopioid exposureopioid use disorderpain behaviorpain reliefphotoactivationreceptorreceptor expressionregional differenceresponsesensorsensory integrationspatiotemporalstemtwo-photon
No Sub Projects information available for 5F30DA057838-03
Publications
Publications are associated with projects, but cannot be identified with any particular year of the project or fiscal year of funding. This is due to the continuous and cumulative nature of knowledge generation across the life of a project and the sometimes long and variable publishing timeline. Similarly, for multi-component projects, publications are associated with the parent core project and not with individual sub-projects.
No Publications available for 5F30DA057838-03
Patents
No Patents information available for 5F30DA057838-03
Outcomes
The Project Outcomes shown here are displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed are those of the PI and do not necessarily reflect the views of the National Institutes of Health. NIH has not endorsed the content below.
No Outcomes available for 5F30DA057838-03
Clinical Studies
No Clinical Studies information available for 5F30DA057838-03
News and More
Related News Releases
No news release information available for 5F30DA057838-03
History
No Historical information available for 5F30DA057838-03
Similar Projects
No Similar Projects information available for 5F30DA057838-03